Working Principle Simulations of a Dynamic Resonant Wall Shear Stress Sensor Concept
نویسندگان
چکیده
This paper discusses a novel dynamic resonant wall shear stress sensor concept based on an oscillating sensor operating near resonance. The interaction between the oscillating sensor surface and the fluid above it is modelled using the unsteady laminar boundary layer equations. The numerical experiment shows that the effect of the oscillating shear stress is well correlated by the Hummer number, the ratio of the steady shear force caused by the outside flow to the oscillating viscous force created by the sensor motion. The oscillating shear stress predicted by the fluid model is used in a mechanical model of the sensor to predict the sensor's dynamic motion. Static calibration curves for amplitude and frequency influences are predicted. These results agree with experimental results on some extent, and shows some expectation for further development of the dynamic resonant sensor concept.
منابع مشابه
Predicting Shear Stress Distribution in Rectangular Channels Using Entropy Concept
This study makes use of the Tsallis entropy to predict the shear stress distribution. Given a definition of the Tsallis entropy, it is maximized by using the probability density function, which then is used to attain a novel shear stress equation. This is then employed for calculating the shear stress distribution in rectangular channels in different aspect ratios and finally, for viability, th...
متن کاملThe Micro-Pillar Shear-Stress Sensor MPS3 for Turbulent Flow
Wall-shear stress results from the relative motion of a fluid over a body surface as a consequence of the no-slip condition of the fluid in the vicinity of the wall. To determine the two-dimensional wall-shear stress distribution is of utter importance in theoretical and applied turbulence research. In this article, characteristics of the Micro-Pillar Shear-Stress Sensor MPS(3), which has been ...
متن کاملEffects of Degree of Consolidation and Anisotropic Consolidation Stresses on Shear Modulus and Damping Ratio of Cohesive Soils at Low Strain
During consolidation process of saturated cohesive soil the soil stiffness increases. Increase of the effective stress due to dissipation of excess pore pressure causes additional stiffness of soil mass. This phenomenon has a very important effect on the behavior of saturated cohesive soils during dynamic loading. In the current investigation the changes in maximum shear modulus. Gmax and dampi...
متن کاملمدل سازی رفتار دینامیکی مخازن هوایی ذخیره سیال تحت بار انفجاری
In the present study, three dimensional (3D) finite element (FE) simulations of a steel water storage elevated tank for different tank aspect ratios, percentages of water stored in the tank, tank wall thicknesses and effect of baffle in tank have been performed using the FE software ABAQUS. The coupled Euler–Lagrange (CEL) formulation in ABAQUS has been adopted herein which has the ...
متن کاملControl of blood vessel structure: insights from theoretical models.
Blood vessels are capable of continuous structural adaptation in response to changing local conditions and functional requirements. Theoretical modeling approaches have stimulated the development of new concepts in this area and have allowed investigation of the complex relations between adaptive responses to multiple stimuli and resulting functional properties of vascular networks. Early analy...
متن کامل